Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect

نویسندگان

  • Hai Zhou
  • Guojia Fang
  • Nishuang Liu
  • Xingzhong Zhao
چکیده

Pt/ZnO nanorod (NR) and Pt/modified ZnO NR Schottky barrier ultraviolet (UV) photodetectors (PDs) were prepared with different seed layers and metal oxide modifying layer materials. In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively. For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity (Dλ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism. Also the ratio of D254* to D546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optimization of Vertically Aligned ZnO Nanorod Array-Based UV Photodetectors via Selective Hydrothermal Synthesis

Vertically aligned ZnO nanorod array (NRA)-based ultraviolet (UV) photodetectors (PDs) were successfully fabricated and optimized via a facile hydrothermal process. Using a shadow mask technique, the thin ZnO seed layer was deposited between the patterned Au/Ti electrodes to bridge the electrodes. Thus, both the Au electrodes could be connected by the ZnO seed layer. As the sample was immersed ...

متن کامل

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Metal-Semiconductor-Metal Near-Ultraviolet (~380 nm) Photodetectors by Selective Area Growth of ZnO Nanorods and SiO2 Passivation

Metal-semiconductor-metal near-ultraviolet (NUV) photodetectors (PDs) based on zinc oxide (ZnO) nanorods (NRs), operating at λ ~ 380 nm, were fabricated using conventional photolithography and hydrothermal synthesis processes. The vertically aligned ZnO NRs were selectively grown in the channel area of PDs. The performance of ZnO NR-based NUV PDs was optimized by varying the solution concentrat...

متن کامل

The Effects of Different Seed Layers and Growth Time on the Quality of ZnO NRs Arrays

ZnO nanorods (NRs) were synthesized using an in situ low-temperature hydrothermal method. In order to investigate the effect of different seed layers on quality of ZnO NRs arrays, alcoholic, alkaline and acidic seed solutions were deposited by spin coating on ITO-glass substrate. Experimental results revealed that the vertically ZnO NRs obtained from monoethanolamine-based seed layer is the...

متن کامل

Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers

We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011